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Abstract

Forest fires have been identified as one of the main drivers of deforestation
and forest degradation Sub-Saharan Africa. We study the (short-run) effects
of a program targeted at reducing the incidence of forest fires in 12 gazetted
forests in arid Burkina Faso. Making use of detailed satellite images on forest
fires and remaining vegetation cover in, in total, 78 forests over the period
2014-2018, we estimate the the average treatment effect of the intervention
using the Synthetic Control Method. We find that the intervention resulted
in a significant decrease in (the severity of) forest fires in the periods where
forest fires tend to be most prevalent — at the end of the agricultural season
(in November), and at the onset of the new agricultural season (in March).
However, these estimates are likely to be partially driven by imperfect fitting
on pre-treatment outcomes. We find mixed evidence on the extent to which
this resulted in increased vegetation cover.
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1. Introduction

Forests provide a number of local and global ecosystem services including
carbon sequestration, biodiversity conservation, local climate regulation (es-
pecially precipitation), and soil and water conservation. Deforestation is a
concern especially in arid zones, because of the relatively high rates of de-
forestation and because forest loss may give rise to desertification. As part
of the Kyoto Process the United Nations have initiated a global forest con-
servation policy, the Reduction of Emissions from Deforestation and forest
Degradation (REDD+) Program, that provides not only technical assistance
but also financial compensation to developing countries if they manage to
improve forest conservation as compared to a baseline (or business-as-usual)
scenario. To learn how to overcome the many challenges and constraints
that are associated with implementing forest conservation programs, the
Climate Investment Fund (CIF) has selected eight developing countries as
pilot areas to assess the effectiveness of the interventions and to identify the
main barriers hampering successful implementation of the interventions in
the field. Burkina Faso, the country this IE program will focus on, has been
chosen as the pilot country for the arid and semi-arid areas.

In this paper, we assess the effectiveness of an intervention, funded by the
CIF and implemented by the government of Burkina Faso, aimed at reduc-
ing one of the main causes of deforestation in the country — forest fires. The
government’s intervention targets 12 of Burkina Faso’s 77 gazetted forests,
and consists of a variety of measures — setting up fire barriers to compart-
mentalize wildfires, but especially raising awareness among the local popu-
lations about the detrimental effects of forest fires. Most of the forest fires in
Burkina Faso are human-induced, aimed at clearing land and increasing soil
fertility. But there is a religious component to the end of the agricultural
season’s burnings too.

We use the synthetic control method on satellite-based measures to es-
timate the program’s impact on forest occurrence and vegetation cover.
These measures on the 77 forests are compiled from accessible data in the
MODIS and LANDSAT 7 databases. We aggregate forest fire measures to
the forest-month level, while NDVI and EVI measures on vegetation cover
are aggregated to the forest-season-level. The resulting panel dataset cov-
ers the period from June 2004 until October 2018. Non-exogenous selection
of forests along potentially time-varying factors is taken into account in
the synthethic control method. For each treated forests it creates a con-
vex linear combination of non-program forests which fits on the observed
pre-program outcomes of the selected forests. We compare the outcomes of



program forests to those of the synthetic during the program period, since
the synthetic control’s outcomes serve as estimates of the counterfactual.

Our main results show that the number of forests fires decrease in Novem-
ber and March in response to the program. In November, the beginning of
the dry season with most of the fire occurrences, the reduction is between
50 — 30% when compared to fires in the dry-season before the program.
Although absolute decrease in March is a magnitude smaller, in relative
terms the effect is similar to that in November. These reductions seem to
be driven by a lower number of burned areas, which reflects that there are
less uncontrolled fires or that they are extinguished more efficiently than
before the program. However, these results must be regarded with a grain
of salt as the synthetic controls do not seem to perfectly track the treated
forests before the program. Imperfect fitting is not present when estimat-
ing the impacts on vegetation, but results do not suggest that reduced fire
occurrence translated into more intense vegetation cover.

The remainder of this paper is organized as follows. Section 2 contex-
tualizes forest degradation and forest fire occurrence in Burkina Faso and
present the FIP program. Data sources, data processing and the final vari-
ables are discussed in section 3. Section 4 details the estimation procedure
of the synthetic control method. Results are in section 5, while we provide
discussion and conclusion in section 6.

2. Study context of Burkina Faso

2.1. Geography and climate of Burkina Faso

To understand the potential impact of the government’s intervention on
forest fires, let us first introduce the relevant climatological conditions of
Burkina Faso. The country is located in the transition zone between the
Sahelian and the Sudanian climate zone in West-Africa (Ministry of En-
vironment and Sustainable Development, 2014). Most of the country falls
into the Sudanese zone, with average rainfall of between 600 and 1000 mm
and with about 50 — 100 rainy days. Vegetation cover consists of wooded
and arboraceous savannas. The north of the country falls into the Sahellian
zone, with < 600 mm of average annual rainfall and with less than < 45 days
rainy days. The natural vegetation in this zone consists predominantly of
grass savannahs with shrubs and sporadic tree cover.

In general, the country has a dry tropical climate with four seasons (Somé



et al., 2013), but the climate allows for only one agricultural season.® The
rainy season starts in May-June, and this marks the start of the agricultural
season as most of the annual rainfall is concentrated in this time period
(FAO, 2014b). August-September is characterized by decreasing rainfall and
temperatures, and the growing season typically ends in October-November.
The dry and cool season then lasts from November-December until February-
March, followed by the hot season as the harmattan winds blow from the
Sahara. This period from February until March-May is considered to be the
off-season to growh and harvest rice and sorghum (FAO, 2014b).

2.2. Forest degradation and causes of forest fires in Burkina Faso

Annual deforestation rate in Burkina Faso between 1990 and 2010 was 1.1%,
despite the government’s continuous effort to tackle deforestation and forest
degradation since the 1980s. In this period, the share of forests in land areas
dropped from 46% to 39% , resulting from forest losses in clearly defined
forests and other wooded lands such as wooded savannas, dry, and gallery
forests (FAO, 2014a). The main causes of these changes are identified to be
the expansion of agricultural and pastoral activities, forest clearing for fire-
wood or charcoal, and the prevalence of bush and forest fires (Pouliot et al.,
2012; CIFOR, 2016). Expansion of agricultural and pastoral activities is
mainly related to the increasing population pressure from population growth
and from intra-country migration from the Sahelien areas in the north to-
wards the more productive areas in the tropical forest regions (Pouliot et al.,
2012; Ouedraogo et al., 2009). Since agricultural intensification in rural ar-
eas is hindered by inequality of assets and wealth, most notably land rights
(Goldstein and Udry, 2008; Etongo et al., 2015), more lands are cleared
to meet the increasing demand for agricultural products (Ouedraogo et al.,
2011). Pressure from increasing population also affects demand for firewood
and charcoal which are the most affordable energy sources for low-income,
rural households (Ouedraogo, 2006; Bensch et al., 2015; Ouedraogo et al.,
2011).

Forest fires are also anthropogenic, but only partially related to popula-
tion pressures. Although fire setting in forests is criminalized since the 1980s
(Devineau et al., 2010), forest clearing for agricultural or pastoral purposes
can be carried out by intentionally setting clearing fires. Also, herders burn

3We define the agricultural year to start from the beginning of June until next June,
aligning the beginning of the growth season (FAO, 2014b). That is the 2014 agricultural
year lasts from June 2014 until June 2015.



the lower levels of the forests in the dry season to facilitate faster regrowth
of grasses that their herds can graze (Savadogo et al., 2007). Additionally,
hunters and poachers set fires to lure out preys and improve visibility in the
hunting territories Sawadogo (2009). Fires are also present on agricultural
plots (where they are set to clear old fields after the growth season and to
manage soil fertility), and can spread to forest. All these fires are initially
smaller and affect the lower vegetation; prevent the development of sapling,
canopy in growth; and killing seeds (Zida et al., 2007).* They can directly
damage already grown tree canopy if they intensify and spread in the forests,
since these fires are not lit under controlled conditions. Low intensity, con-
trolled early fires on the other hand are set to reduce the amount of fuel for
more hazardous late fires and to create firebreaks that prevent the spread of
late fires. Due to policies since the 1980s religious fires® are organized at the
community level and are supervised by relevant forest management authori-
ties, thus these types of burnings became controlled (Devineau et al., 2010).
All these controlled fires are carried out by forest management agencies and
scheduled for October-November, the beginning of the dry season when the
vegetation to be burned is not dry (Savadogo et al., 2007).

2.8. The Forest Investment Project in Burkina Faso

As indicated, the Forest Investment Project (FIP) is Burkina Faso’s initia-
tive to support the international REDD+ strategy. Although not selected
to be an initial partner country in the REDD+ initiative, the Climate In-
vestment Funds selected Burkina Faso as one of the pilot developing country
for its Forest Investment Program given how representative it is of arid and
semi-arid areas and given its past conservation efforts (i2i DIME, October
2016).

Conservation efforts in the Burkinabe FIP program centers on 12 gazetted
forests, which were selected from the set of Burkina Faso’s 77 gazetted forests
in two stages (see fig. B.1). In the first stage, the gazetted forests were ranked
on the the perceived urgency of conservation, where perceived urgency was

“Besides, fires can lead to a biome dominated by fire-resistant plants (Sawadogo, 2009;
Devineau et al., 2010). This generally limits the types of non-wood forest products that
becomes available for communities around the forests.

5These religious and culture fires can serve different purposes depending on the traditions
of the community. They can be used to eliminate weeds and pests in the areas around
holy sites (Dugast, 2008; Daugey, 2016). Other ritual fires are lit to ward off harmful
spirits (Issaka and Ouedraogo, 2011). In other cases, customary fires are symbolic. For
example, they might reflect regeneration (Luning, 2005; Dugast, 2008)



based on wildfire incidence, deforestation and ecosystem degradation, as well
as on carbon sequestration capacity. This reduced the number of candidate
forests from 77 to 23. Because of budget concerns a second stage was im-
plemented, which consisted of selecting 12 out of the remaining 23 gazetted
forests based on forest size, the presence of a forest management system, and
on the (perceived) availability of non-timber forest products.® Although the
11 forests excluded in the second stage are fairly comparable to the selected
12 forests along the first set of criteria, this implies none of the excluded
forests from the first nor the second stage are directly comparable to the
final 12.

Burkina Faso’s FIP pilot program was scheduled to run from October
2014 to 2018, and consisted of two main projects. The first project, im-
plemented by the African Development Bank’, focuses on the improving
vegetation cover and forest conservation in the selected gazetted forests by
eliciting conservation efforts from neighbouring communities. These efforts
are strengthened by financial incentives to communities and by improving
forest governance at forest and community level. The second project from
the World Bank® targets tree conservation in the areas surrounding the
selected gazetted forests. This project operates through knowledge trans-
fer, technologies, infrastructures, and land use plans that generate income
sources for communities that are compatible with conservation efforts.

More directly related to forest fires, the program intended to raise aware-
ness at the local level, transfer additional knowledge to forest management
agencies to better deal with forest fires, provide them sufficient material as-
sets to monitor and prevent fires, open firebreaks in and around forests to
limit expansion of burning fires, and offer payment-for-ecosystem contracts
to communities conditioning on the number of fire occurrences. Only knowl-
edge transfer to forest management agencies was potentially implemented
in time due to delays in the program, while the rest (along with other forest
conservation measures) are implemented from late 2016-early 2017. Hence
we potentially measure the effect of improved forest management activity.”

5The two lists of exact criteria are presented in appendix Appendix A.

"The project is titled as ”Gazetted Forest Participatory Management Project for
REDD+".

8The project is titled as ” Project for the Decentralized Management of Forests and Wooded
Areas”.

9This potential channel can be closely linked to a previous project implemented by the
Burkinabe government and financed by the Finnish government between 1998 and 2006.
The Fire Management Project relied on a community-based approach that provided
basic knowledge on fire management to villages and improved local institutions (e.g. by



3. Data

The analysis in this paper relies on panel of monthly grid-level data on
forest fire occurrences and vegetation cover from 2000 to 2018 in Burkina
Faso’s gazetted forests. Similarly to Burgess et al. (2012), we use measures
extracted from satellite images that are made available by NASA and USGS.
To be able to better understand the data and its limitation, we discuss the
sources of these variables in more detail.

Satelite based data on forest fires are collected from the FIRMS database.'”
More specifically, we use fire data from the MODIS collection in FIRMS
which has data from November 2000, rather than the VIIRS collection in
FIRMS that is only available from 2012.!' Both dataset determine forest
fire occurrence based on infrared radiation, but they are based on different
satelite images and processing algorithms. Having a longer panel allows us
to observe fire occurrences years before the program, which is important as
we are estimating the effect of the program using a difference-in-difference
approach.

Using the MODIS dataset comes at the expense of slightly less frequent
observations and lower precision regarding the location of fire occurrences.
That is, the satellite for the MODIS has a global coverage over 1-2 days
and the observations are assigned to 1 km pixels, whereas the satellite from
the VIIRS collection has a global coverage at every 12 hours giving data on
350 m or 750 m large pixels (NASA, 2019).!? Having less accurate location
on the fires is not restricting our analysis as the estimation strategy does
not exploit this information.'> However, a wider time window for global

setting Fire Management Committees in 1999). If villages and local forest agencies are
aware of these knowledge, but their effort diminished after the end the Fire Management
Program, then learning about the objectives of FIP program in the 12 selected forests
village residents and forestry agencies might decide to increase their fire management
efforts even before any related FIP component was implemented. In this case, one would
measure the effect of announcing the program before the implementation of any program
component.

OFIRMS stands for Fire Information for Resource Management System and it is collected
by NASA.

HNODIS stands for Aqua Moderate Resolution Imaging Spectroradiometer, while VIIRS
stands for Visible Infrared Imaging Radiometer Suite.

2Time for having global coverage means the time the satellite needs to collect data over
the whole globe. This is not the same time the satellite takes to return over the same
area. Within one cycle of global coverage the satellite passes over the same area while
not covering some part of the globe. Both satellites take 3-4 images of the same area on
the day in which the area is covered by the orbit of the satellite (NASA, 2019).

13 Also this pixel size is small enough to get an idea about the presence of firebreaks and the



coverage means that the MODIS dataset might not cover some fires that
occurred during days the satellite did not fly over Burkina Faso.'* In this
case, the dataset indicates zero fire occurrence for the grid on that day. The
extend of this issue is not explored further at this stage of the analysis. The
MODIS collection only indicates the day at which a forest fire is detected
and the grids which were affected by the fire. This implies that our final
dataset will have 0 fire occurrences for those grids on which no fire was
detected.

Using the data from the MODIS dataset, we construct three monthly
forest fire occurrence measures that take into account the uncertainty from
the fire detection algorithm. The confidence level between 0 and 100% is
available for each detected fire. To check whether including potentially false
positive detection affects results, we use the number of all fire occurrences
(fire), the number of fire occurrence with at least 50% confidence(conf50),
and the number of fire occurrence with at least 80% confidence (conf80)
per month-grid as outcome variables.'® These variables capture the average
number of fires that burned on the grids of the forests in the particular
month. The three variables are illustrated in fig. C.2a-C.4a. The figures
indicate that fires occur mostly in the dry season (November-February),
and not at all in the rainy season. To provide approximate information on
the size of the area affected by fire, we also regard at the forest-month-level
the share of grids that were affected by fire.!®. The corresponding monthly
time series are presented in fig. C.2b-C.4b.

The other set of outcome variables is grid-level vegetation cover which
is expected to reflect any potential impacts on forest cover, similarly as in
Foster and Rosenzweig (2003). In this dataset, there are two measures on

occurrence of controlled burnings intended to create firebreaks. Plotting the number of
fires on a map for each grid for a given month, firebreaks can be spotted by straight lines
which have a consistent number of fire occurrences on one side and no fire occurrences
on the other side.

14To verify whether this is a significant issue one can compare fire occurrences between
the MODIS and VIIRS datasets. To do so, one has to aggregate forest fire occurrences
at comparable forest grids.

15Note that low thresholds for confidence level might lead the under-rejection of false fire
detections, while high thresholds might result in over-rejection of true, but imperfectly
observed fires. Also note that less intense fires are more likely to be falsely rejected at
a higher threshold.

Obviously, this provides an overestimate of the area burned, as not all vegetation on
a grid may have been consumed by fire. However, the size of the pixels is sufficiently
small for the estimate the be quite precise (Burgess et al., 2012; NASA, 2019).



vegetation cover: the Normalized Difference Vegetation Index (NDVI) and
the Enhanced Vegetation Index Data (EVI).!">!® The measures are available
from the LANDSAT 7 database.!” Up until February 2013 observations were
collected by just one single satellite with global coverage of 16 days. The
addition of a second satellite reduced increased the subsequent frequency
of global coverage to once every 8 days. Since under normal conditions
the vegetation cover changes at a slower rate than forest fires, the lower
frequency of satellite imaging mostly causes a problem in periods of increased
cloud cover — that is, in the rainy season.?’ Figure C.5 presents the share of
forests with missing NDVI values over time. It shows that the NDVI data
are largely missing in the period June-September. That means that we can
only compare vegetation cover in the treatment and control forests in the
remainder of the year, when forest fires are also more likely to occur.
Missing values in the vegetation cover indices generate two potential
problems. First, they can bias our estimates if there are systemic differ-
ences in cloud coverage over treatment and control forests that we are not
accounting for. The second problem is related to our main identification
strategy that requires a strongly balanced panel at the forest level. To work

"NDVI, the Normalized difference vegetation index, reflects the relation between red
visible light (RED, which is typically absorbed by a plant’s chlorophyll) and NIR wave-
length (which is scattered by the leaf’s mesophyll structure) (Glenn et al., 2008)). The
NDVI is calculated as (NIR-RED)/(NIR + RED). EVI, the Enhanced Vegetation In-
dex, has been designed to improve the sensitivity in high biomass regions reducing the
atmosphere influences, especially in areas of dense canopy which uses the blue band to
correct aerosol influences in the red band, showing photosynthetically active vegetation
(Huete et al., 1994, 1997, 2013). It is calculated as: G * ((NIR - RED)/(NIR + C1 *
RED - C2 * BLUE + L)), where coefficients are adopted from the MODIS-EVTI algo-
rithm indicating the gain factor (G = 2.5), the adjustment for correcting differential,
red radiant and non-linear transfer through canopy (L = 1), and the aerosol resistance
term which corrects atmospheric influences in the red band (C1 = 6 and C2 = 7.5).
EVI adjustments are designed to make EVI more robust than NDVI in areas with high
soil exposure and in dense vegetation, but also more sensitive than NDVI to variation
in the viewing geometry, surface albedo, and sun elevation angle across variable terrain
(Garroutte et al., 2016). For more information, see (Adjognon et al., 2019).

18 At this stage of the research we do not use machine learning techniques on NDVI or EVI
measures to catogerize grids on whether there is still forest cover or not, like in Burgess
et al. (2012) or Jayachandran et al. (2017).

9The exact data source is LANDSAT 7 Collection 1 Tier 1.

20Ty see the extent of the problem, one can navigate to the source of the dataset (Earth
Engine Data Catalog, last. accessed April 14, 2019) and run the example code in the
corresponding code editor, setting the date between June 1, 2010 and August 1, 2010
and centralizing the map on Burkina Faso (Map.setCenter(-1.98,12.27,7)).


https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LE07_C01_T1_32DAY_NDVI

with the remaining data, we first impute the missing forest-month vegeta-
tion indices for the non-rainy season months separately for NDVI and EVI.
We replace missing values with the mean of observed vegetation indices of
other forests in the same treatment group in the same month. We then
define three periods within the agricultural year, and average the vegeta-
tion indices within these periods for each forest. The periods are chosen to
reflect the seasonal changes: (1) the post-rainy season’s transitory period
covering September-October; (2) the dry period from November to Febru-
ary; and (3) the pre-rainy season’s transitory period from March until May.
Imputing missing months and averaging observations in these periods, we
get data points that combine observable values and imputed values to char-
acterize the period in question.?’ The result is an annual panel for forests
with 6 variables capturing vegetation cover in different periods of the year:
3 for NDVI and 3 for EVI. The corresponding time series are presented in
fig. C.5a-C.5¢c. In addition, fig. C.5d-C.5f and fig. C.6a-C.6¢ present similar
time series of periodical forest fire occurrences and share of burned forest
grids (with no restriction on the confidence level of forest fire detection).

4. Empirical approach

The Synthetic Control Method (SCM) has been developed to generate treat-
ment effect estimates that are unbiased even when unobservable variables
driving selection into treatment vary over time (Abadie et al., 2010; Cavallo
et al., 2013). The exact criteria on the basis of which treatment forests were
selected are unknown and are potentially time-varying, but SCM seems to
be particularly well-suited for our purposes because of the arguably high
serial correlation in the (unobservable) selection variables. The underlying
idea of SCM is to estimate the counterfactual outcomes for the treatment
forest (had they not been treated) by taking a weighted average of the out-
comes of a selection non-treated forests. The method assigns weights to all
65 gazetted non-treatment forests OR IS IT 11 — = 23-127 (of the 77 in the
country — all gazetted forests that were not selected for the intervention) —
zero, or a positive weight — such that the weighted average of the set of con-
trol forests traces the treatment forests’ pre-treatment trend (the number of

21'We also present estimation results without imputing and dropping forests where any
of these periodical values are missing. Dropping forests only affects 1 treated forests
for pre-rainy season NDVI and EVI measures and we are still left with more than 50
non-treated forests. Given extensive missing values, we are not able to estimate effects
on vegetation cover in the post-rainy season.

10



forest fires in each period, or the NDVI index) as closely as possible. More
specifically, the algorithm chooses the convex linear combination of non-
treated forests that yields potential pre-treatment outcomes and covariates
that are closest to those of the corresponding treated unit. Abadie et al.
(2010) shows that when the synthetic control closely fits pre-treatment out-
comes and observed covariates to those of the treatment unit, unobserved
confounding factors will also closely fit and the post-treatment outcomes of
the synthetic will provide unbiased estimates on the treated unit’s missing
counterfactual outcomes.

To present the estimator, the estimation procedure, and the inferential
procedure of this method more formally, we follow Cavallo et al. (2013).
Assume that there are I treatment units (indexed k = 1,.., K) which are
continuously treated from Ty + 1 until T (1 < Ty < T'), whereas there
are J non-treated units (indexed j = 1,..,J) are never treated in the time
period under consideration (¢ € {1,..7p,...,7}). Let us use Yj; to denote
the observed (or actual) outcome of unit i in period ¢, and Y,/ and Y the
outcomes of unit ¢ in period ¢t had it been treated, or not treated, respectively.
Obviously, for treatment forests YZ{ = Y;; while Yév is unobserved. The
reverse holds for the potential control forests. Using an indicator variable
Dj; to capture whether unit ¢ is treated in period ¢, we have

Ve = Y + i Dy,

where o (: YZ{ — Ylév ) is the treatment effect in forest 7 if it is exposed to
treatment in ¢ (identical to the Rubin Causal model). Given the observable
data at hand, we intend to estimate the treatment effects in Ty < ¢t < T for
unit ¢ € I. Since only the treated outcome is observable for ¢ in this period
and a;+ = Y — Yziv for t > Ty, we need to estimate the counterfactual
outcome in this period, Ylév

Abadie et al. (2010) suggest using a weighted average of non-treated
units to estimate the missing counterfactual. We can capture each potential
synthetic control with W(xqy = (w1,...,Wy)’, a vector of non-negative
weights summing up to one that assigns weight w; for the corresponding
unit j = 1,..., J. If we also have a vector of observable covariates (Z;) that
affects the outcome and are not affected by the treatment, the ideal syn-
thetic control would fit pre-treatment outcomes and the relevant observable
outcomes of the treated unit:

J J
S wiYy=Yyfor l<t<Ty; Y wiZj=2, Vk=1.,K (1)
j=2 j=2

11



Fitting on the pre-treatment outcomes as well as on observed covariates
(those which are expected to affect the outcome variable of interest), the
authors show that the synthetic control also fits the unobserved relevant
factors of the treated units. In this case, the missing counterfactual outcomes
of the treated unit could be estimated by the outcome of the synthetic control
and an unbiased estimate of the treatment effects would be:

J
Qg =Y — > wiYy for Ty<t<T A.Vk=1,.,K (2)
j=2

Perfect fitting on pre-treatment outcomes and relevant observable charac-
teristics (eq. (1)) is possible when these attributes of treated unit k are in
the convex hull of the attributes of non-treated units. That is if

(Yiicny, Z1) € Conv({(Yi<ty, Zj), Vi=1,...,J}).

In the actual algorithm, weights (W},) are estimated such that the syn-
thetic control fits those attributes as well as possible for the corresponding
treated unit k. Denoting by X a (m x 1) vector of the attributes of the
treated unit k& need to be matched, and by Xy the corresponding (m x J)
matrix collecting the attributes of the non-treated units, Abadie et al. (2010)
propose to obtain the optimal weights by minimizing the following distance
forall k=1,.. K:

i X, — X, =/(X, — X ! X, — X
min | X5~ XoWi =/ (Xe — XoWi)' Vi (X — XoWh),

J
st wei 20 Vh=1,.,0 A. > w=1.
j=1

Here Vj is a (m x m), symmetric, and positive semi-definite matrix that
affects mean square prediction error by weighting the m attributes on which
the synthetic control is fitted. After estimating the effect for each treatment
period and for each treated forests, the algorithm averages the observable
outcomes over treated forests (7 >, Vi ¢ = ¥;) and compares this time series
to the average of corresponding synthetic outcomes (& >, > Wk Y =

}A/tsc). We report these averaged treatment effects for each post-treatment
period.

We use every pre- and post-treatment periods to compare observed out-
comes of treated forests and the estimated counterfactuals from SCM. How-
ever, when working with monthly fire occurrences or burned grids variables,

12



we limit the estimation of forest and attribute weights (W and V') on part
of the pre-treatment period (from June 2006 until September 20142?) due
to computational limitations. This is not the case when we use vegetation
cover measures since these estimates rely on annual data. Regarding the set
of attributes (X)) used for constructing the control group, we include all the
outcome variables for these pre-treatment periods discussed above, as well
as forest size??, the average number of fire occurrences on a forest grid over
the pre-intervention period, and the average vegetation cover measure on
forest grid over the whole pre-treatment period. We include the last three
attributes regardless of the outcome variable under analysis.

Turning to the inference procedure, Abadie et al. (2010) propose to use
an exact inferential technique based on placebo tests since large sample tech-
niques are not well-applicable to studies with relatively few treated units.
They argue that using a placebo test based technique is appropriate to cap-
ture the uncertainty from the fact that we estimate the counterfactual of
treated units with a synthetic control. Its first step is to calculate the ex-
act time-specific distribution of the estimated effects in absolute terms?* by
applying the synthetic control method for all units in the donor pool. The
second step is to calculate the share of placebo effects that are smaller than
the estimated treatment effect from the treated forests, which serves as a sig-
nificance level of that estimated treatment effect. Abadie et al. (2010) argue
that this measure does not take into account the quality of synthetic con-
trols estimated for the potential controls, leading to conservative inferences.
They propose the use the ratio of the estimated effects to the corresponding
pre-treatment root mean square predictive error to calculate the distribution
and the significance levels. In our analysis, we also rely on the results from
the normalized test statistics.

5. Results

Columns (1)-(3) of table table D.1 show the monthly-average effects on fire
occurrences detected at different confidence levels. Recall that these results

22 June 2006 is the beginning of the growth season of the agricultural year, while September
2014 is the last period before the program became officially effective.

ZForest size might be a relevant determinant of fire occurrences if monitoring by forestry
agencies is not proportional. In this case, community members are less likely to be
detected and punished for setting fire.

24Time-specific in the sense that separate distributions are calculated for each post-
treatment period.
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are based on the monthly-forest dataset and relies on minimizing the root
mean squared prediction errors (RMSPE) in the period from June 2006 until
September 2014. The estimates show three patterns.

First, there are large decreases in November (M11 in table table D.1)
fire occurrences in the treatment forests after the beginning of the program.
This is important since most fires occur in the dry season. More importantly,
religious fires, post-harvest fires, and controlled management fires are all lit
in November. Turning to the point estimates, average numbers of fires at
the grid-level in November 2015, 2016 and 2017 are reduced by, respectively,
—0.2, —0.16, —0.11 (col (1)) in response to the program. These suggest an
approximately 50% — 30% reduction compared to the pre-treatment, dry-
season fire occurrence in treatment forests (as the average number of fires
is about 0.4, see fig. C.5¢). However, the effect in 2016 is only significant at
10% level and the effect in 2017 is not significant. This suggests that the
marked fall in November fires due to the program is only temporary.

Second, the program seems to reduce fire occurrence in March (M3) as
well. Although the absolute size of these effects are smaller (between —0.014
and —0.051), they are still relatively large compared to pre-treatment fires
in the pre-rainy, transitory season in the treatment forests (=~ 0.03 — 0.035,
see fig. C.5f). This March effect is significant up until 2017, suggesting that
this is also a transitory effect just as the November effect.

Third, the November effect is consistent regardless of the fire occurrence
measure we use, while the March effect is not. Comparing results across
columns (4)-(6) all estimated effects are smaller when a higher threshold
is chosen for fire detection confidence. Implications on the November and
March effects are similar when one introduces a 50% confidence threshold
for detection (comparing columns (4) and (5)), but the March effect is not
consistent anymore with a 80% confidence threshold. Assuming that the we
tend to drop smaller fires when the confidence threshold changes from 50%
to 80%, the comparison implies that the March effect is driven by changes
in smaller fires.

Comparing the effect sizes on the number fire occurrences (col. (1)-(3))
to those on the share of burned grids (col. (4)-(6)), we find fairly similar
impacts. For example, the estimated effect for November 2015 suggests that
the share of burned grids decreased by 13.1 percentage points in response
to the program (col. (4)), which also sizable given a pre-treatment average
of =~ 20% (see fig. C.6b). Since the relative effect sizes for fire occurrences
and for the share of burned grids are similar, these suggest that most of the
reduction in fire occurrences are driven by the latter effect. This reflects that
either there are fewer fires set on different forest grids or already burning
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fires spread at a lower rate across forest grids.

One weakness of these estimates is that they partly reflect imperfection
in the goodness of fit before the treatment period. We show this for fire oc-
currence (with no confidence level) in fig. D.7a-D.7b. Before treatment, the
synthetic control is below or above the high spikes of forest fire occurrences.
For November, the deviation is more consistent as the observed outcomes
of the treated forests are always below the synthetic control’s. Quantita-
tively, the pre-treatment RMSPE is .0704, which is rather large even when
compared to average pre-treatment fire occurrence in the dry-seasonv (.4).
Although imperfect, November treatment estimates corrected with the RM-
SPE above still yields estimates of —.1334, —.0905, —.0395 for 2015, 2016
and 2017, respectively. In relative terms these suggest a 30 — 7% reduction
compared to average pre-treatment fire occurrence in the dry-season, hence
it likely that there is still a November effect. This is not the case for the
March effect in which cases the point estimates would become closer to zero.

Finally, we regard the estimated program impacts on vegetation cover in
table D.2. Even though the NDVI and EVI measures of vegetation cover are
highly correlated, estimates across the two measures are only consistent in
that the program does not seem to have a significant impact on dry season
vegetation cover (col. (3)-(4)). This is surprising as one would expect more
trees staying intact partly as a result of decreasing forest fires in November
and of unchanged fire occurrences in the rest of the dry season (Dec.-Febr.).
There also seems to be no impact on vegetation cover before the rainy season
(col. (5)-(6)) except for 2015 with the EVI as the measure. The effect
sizes are similar for the two measures in this year, hence it is not definite
whether this effect is significant or not. They would imply a ~ 18 — 20%
decrease in these measures relative to the pre-treatment average in the pre-
rainy transitory period (= 0.16 — 0.18, see fig. C.5c). Less clear are the
implications from the estimates on post-rainy season measures in col. (1)-
(2). Whereas the EVI measure implies no impact, the NDVI measure yields
a ~ 12 — 13% decrease in 2015 and a ~ 6% increase in 2016 in response
to the program relative to the corresponding pre-treatment mean (= 0.35,
see fig. C.5a).2° Unlike the estimates on fire occurrence, these estimates are
less likely to be affected by imperfect fitting of the synthetic control in the
pre-treatment period. This is visible in fig. D.8 which implies a fairly low

2 Estimation results with non-imputed vegetation measures are presented in table D.3(see
footnote 21). Even though p-values change for some point estimates, point estimates
are more or less unchanged.
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(.0056) RMSPE.

6. Discussion and further questions

This paper shows that in the short run, the Forest Investment Program
program reduced the number of fires at the beginning of the dry-season
(November) and at the end of the off-season (March), but these reductions
did not clearly translate into more vegetation cover. One possible explana-
tion for this assumes that the avoided fires are small. Small burnings affect
low ground vegetation and affects tree cover by killing seeds. Seedlings, that
survive because of the lower number of fires, would then need more time to
grow and contribute to vegetation density. An alternative, less favourable
explanation would be that vegetation saved from the fires are degraded by
other channels of deforestation/forest degradation (e.g. grazing, or logging).
Following the forests for a longer period and estimating the longer-run effect
would be informative on this question.

Also notable that the reductions in fire occurrence are not persistent, but
they are only present in two months of the year. Since November and March
correspond to the end of the main and the off agricultural season, this fact
suggests that most prevented fires might originate from agricultural lands
(to clear old fields) and spread to forests. In turn, this would imply that
locals either put more effort in controlling these agriculture fires, that local
forest management implement more measures to prevent fire spreading, or
that there there less agriculture burnings altogether. This explanation does
not rule out reduction in other types of fires. Although the sources of each
fires are not observable, we can use the geographical locations of the burned
grids as an attempt to distinguish between fires spreading from fields around
the forests and other types of fires.

Finally, the impact estimates on fire occurrence need to be improved.
Even though we argue that the estimations suggest the presence of favourable
effect, our results are debatable since the synthetic controls do not match
sufficiently closely the outcomes of the treated forests before the program.
We expect improvements in our estimates from turning to the augmented
synthetic method (Ben-Michael et al., 2018) or the synthetic difference-in-
difference method (Arkhangelsky et al., 2018).
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Appendix A. Forest selection criteria

To narrow down the number of forests considered to the program to 23 the
following 7 criteria were used:

Capacity in terms of carbon sequestration of the forest in relation to
the productivity

e Level of CO2 emission by wildfire

Current level of destocking or export of carbon (forest clearing, exces-
sive cutting of firewood, etc.)

Level of the ecosystems degradation/anthropisation

Opportunities to take stock of anterior interventions in the forests
Security level (eliminatory criterion)

Main factor of deforestation/degradation

From the remaining 23 forests, 12 were selected into the prorgam with the
following 8 criteria:

Forest must have or must be designing a development and management
plan

Opportunity to further develop existing resources (e.g. non-timber
products of vegetal and animal origins)

e Spatial span (large forest must be privileged)
e Level of the ecosystems degradation/anthropisation
e How management of common forest areas is allocated (inter-communities

and inter-regions)

e Whether the forest is representative in terms deforestation dynamics
e Presence and activity of professional organizations
e Risk level of activating safeguard policies when interventions are done

in the forest.

Appendix B. Selected forests
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Appendix C. Graphs
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Figure C.3: Monthly time series of grid-level fire occurrence with at least 50% (a) and the

corresponding share of burned grids (b).
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Third are the averages of the share of burned grids in the (g) post-rainy transitory period
(September-October), and (h) in the dry season (November-February).

26



06
25

(mean) prs2_fireBurn
04 .

(mean) dry3_fireBurn
2

.02
A5

)

2004 2006 2008 2010 2012 2014 2016 2018 2004 2006 2008 2010 2012 2014 2016 2018
(first) year (first) year

Treated forests Non-treated forests Treated forests

(a) (b)

Non-treated forests

02

(mean) preR4_fireBurn
o1

o

2004 2006 2008 2010 2012 2014 2016 2018
(first) year

Treated forests Non-treated forests

()
Figure C.6: Annual forest-level time series capturing specific periods of the agricultural
year. Time series show the averages of the share of burned grids in the (a) post-rainy
transitory period (September-October), (b) in the dry season (November-February), and
(c) in the pre-rainy season (March-May).

Appendix D. Estimation results from the synthetic control method

W @ @ Sh(4) f Sh. (?)b d Sh (?)b d
. . . are o are of burne are of burne
Month  Year Fire Fire ¢50 Fire ¢80 burned grids grids(c50) grids(c80)
2015 0.0408 0.0166 0.0099 0.0399 0.0139 0.0063
[0.4103] [0.604] [0.8612] [0.4229] [0.7552] [0.9746]
2016 -0.0764* -0.0502 -0.0514 -0.0696* -0.0364 -0.053
M1 [0.0771] [0.317] [0.7187] [0.0652] [0.3613] [0.6607]
2017 0.037 0.0469 0.0626 0.0006 0.0056 0.039
[0.6127] [0.6845] [0.1848] [0.9321] [0.9] [0.2438]
2018 0.0004 0.0023 0.004*** -0.0007 0.0029 0.0039***
[0.3692] [0.345] [0.0002] [0.7319] [0.4827] [0.0007]
2015 0.0053 0.008 0.0175 -0.0009 0.0068 0.0038
[0.8856] [0.9908] [0.481] [0.977] [0.8288] [0.6676]
2016 -0.0008 -0.0068 0.0247 -0.0052 -0.0017 0.0051
M2 [0.6517] [0.7633] [0.4044] [0.7511] [0.7469] [0.6831]
2017 0.0186 0.0223 0.016 -0.0031 0.0108 0.0113

27



[0.1332] [0.1698] [0.2416) [0.7696) [0.476] [0.3175)
2018 | -0.0559***  -0.0762***  -0.0162 -0.055%%* -0.0738%%* -0.0144
[0.0001] [0.0] [0.1691] [0.0023)] [0.0014] [0.2167]
2015 | -0.0148%  -0.0199%* -0.0036 -0.0164 -0.0194 -0.0034
[0.0588] [0.0484] [0.5808] [0.1314] [0.1314] [0.5965]
2016 | -0.0243%%*  -0.0162%**  -0.0074 -0.0345%%* -0.0255%* -0.014
M3 [0.0012] [0.0054] [0.9483] [0.0014] [0.0129] [0.8159]
2017 | -0.051%%*  -0.0327%%*  -0.0094 -0.0503*¥* -0.0327%%* -0.0082
[0.0001] [0.0001] [0.2042] [0.0002] [0.0002] [0.2385]
2018 |  0.0004 0.0023 0.004%%* -0.0007 0.0029 0.0039%¥*
[0.3692] [0.345] [0.0002] [0.7319)] [0.4827) [0.0007]
2015 | 0.0036 0.0036 0.0042%% 0.0009 0.0015 0.0016
[0.4242] [0.382] [0.0475] [0.7453] [0.6978) [0.2067]
2016 | 0.002%%%  0.002%%%  0.0021%%* 0.001%** 0.001%** 0.0011 %%
M4 [0.0] [0.0] [0.0] [0.0] [0.0] [0.0]
2017 | 0.0041 0.0042 -0.0001 0.0041 0.0043 -0.0003
[0.5335] [0.5505] [0.835] [0.6268] [0.6444] [0.8358]
2018 | -0.0006 -0.0003 -0.0001 -0.0008 -0.0002 -0.0002
[0.8938] [0.9316] [0.835] [0.8829] [0.9349] [0.8358]
2015 | -0.0002 -0.0002 ~0.0011 -0.0001 -0.0002 -0.0006
[0.5149] [0.4668] [0.5671] [0.638] [0.4908) [0.5481]
2016 | -0.0002 0.0 0.0 -0.0001 0.0 0.0
M [0.2522] [1.0] [1.0] [0.3283] [1.0] [1.0]
2017 | 0.0014 0.0011 0.0016%** 0.0014 0.0011 0.0016%+*
[0.7073)] [0.89] [0.0] [0.4742] [0.7097] [0.0]
2018 | -0.0001 -0.0 -0.0 -0.0001 -0.0 -0.0001
[0.8522] [0.9267] [0.835] [0.8831] [0.9032] [0.8358]

For June, July, August and September, all effect estimates are 0 and the corresponding p-values are 1.

2014 | 0.0006 -0.0009 -0.0026 -0.0036 -0.0015 -0.0027
[0.6684] [0.9854] [0.3193] [0.8432] [0.9902] [0.2698]
2015 | -0.0034 -0.002 -0.0003 -0.0063 -0.0026 -0.0005
N [0.8877] [0.9121] [0.854] [0.4984] [0.7987] [0.7225]
2016 | -0.0343 -0.045 -0.0506 -0.0423 -0.0327 -0.0452
[0.9455] [0.6002] [0.1146] [0.7781] [0.6634] [0.1043]
2017 | 0.0024 -0.0157 0.0032 -0.0085 -0.0134 0.0089
[0.8213] [0.7166] [0.8726] [0.8129] [0.5694] [0.7578]
2014 | -0.1398 -0.1014 -0.0707* -0.1031 -0.0752 -0.0561%%
[0.302] [0.352] [0.0831] [0.2025] [0.2881] [0.0444]
2015 | -0.2009%*  -0.1772%%%  -0.1036%** | -0.1316%** -0.107%%* -0.0826%%*
ML [0.0121] [0.0015] [0.0002] [0.0071] [0.0032] [0.0004]
2016 | -0.1646%  -0.1519%%*  -0.0637* -0.0977%* -0.0668* -0.0371
[0.0508] [0.0092] [0.0771] [0.0423] [0.0507] [0.1337]
2017 | -0.1104 -0.1113 -0.0661 -0.0797 -0.0503 -0.0319
[0.2711] [0.1041] [0.1045] [0.1452] [0.2118] [0.1979]
2014 | 0.1275 0.1198 0.0239 0.0392 0.0494 -0.0027
[0.4295) [0.402] [0.9256] [0.5577) [0.4546) [0.665]
2015 | 0.1277 0.1161 0.05 0.0685 0.0386 0.0371
M9 [0.7104] [0.7084] [0.3544] [0.7544] [0.8573] [0.4449]
2016 |  0.0962 0.0877 -0.0056 0.0519 0.0432 -0.0341
[0.3591] [0.4786] [0.447] [0.4179] [0.4628] [0.1622]
2017 | 0.0184 0.0405 0.009 0.0013 0.0151 0.0085
[0.6872] [0.4415] [0.4176] [0.8201] [0.3481] [0.4272]
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Table D.1: Estimated average treatment effect on the FIP participant forests
from the synthetic control method. Estimates are based on foret-month-level data.
Treatment starts October 2014. P-values from placebo analysis are in parentheses. P-
values standardized with pre-treatment RMSPE are in square brackets. *** p<0.01, **

p<0.05, * p<0.1.

©) ® ® @ ® ©
NDVILLimp EVI.imp | NDVI.imp EVI.imp | NDVI.imp EVI.imp

PRS2 (Sep-Oct) DRY3 (Nov-Feb) PRER4 (March-May)
2015 -.0468%* -.0087 -.0121 -.0089 -.0293 -.03385%*
[.0111] [.5160] [.1245] [.4065] [1722] [.0351]

2016 .0239** .0076 -.0139 -.0040 .0018 .0007
[.0396] [.4744] [.1766] [.8711] [.583] [.8773]

2017 -.0013 .0009 .0023 -.0007 -.0103 -.0133
[.7975] [.6371] [.1875] [.3681] [.7709] [.3533]

Table D.2: Estimated average treatment on the treated effects on veg-

etation cover from the synthetic control method. Estimates are based
on annual forest-level data. Treatment starts from 2014 for the dry-season vari-
ables (dry3.ndvi_imp and dry3_evi_imp) and pre-rainy transitory period variables
(preR4.ndvi_imp and preR4_evi_imp), and from 2015 for the post-rainy transitory pe-
riod variables (prs2.ndvi_imp and prs2_evi_imp). P-values from placebo analysis are in
parentheses. P-values standardized with pre-treatment RMSPE are in square brackets.
*** p<0.01, ** p<0.05, * p<0.1.
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(1) (2) 3) (4)
NDVI EVI NDVI EVI
DRY3 (Nov-Feb) PRER4 (March-May)

2015 | -.0110  -.0096 | -.0144  -.0358%**
[4466]  [.3437] | [.1707] [.0016]
2016 | -.0160%  -.0048 | .00751 .0090
[0957]  [.9182] | [.4472) [.4802]
2017 | .0034**  -.0013 | .-.0028 -.0083
[0299]  [.2531] | [.8147] [.5566]

Table D.3: Estimated average treatment on the treated effects on vegetation
cover from the synthetic control method. Estimates are based on annual forest-level
data. Treatment starts from 2014 for the dry-season variables (dry3_.ndvi and dry3_evi)
and pre-rainy transitory period variables (preR4 ndvi and preR4_evi). Forests with miss-
ing values from the time series are dropped from the analysis. Estimations with the
post-rainy season variables are dropped from the same reason. P-values from placebo
analysis are in parentheses. P-values standardized with pre-treatment RMSPE are in
square brackets. *** p<0.01, ** p<0.05, * p<0.1.

2005m1 2010m1 2015m1 2020m1

Treated —--——- Synthetic Control

2004m1  2006m1 2008m1 2010m1 2012m1 2014m1 2016m1 2018m1
time

Treated ——-—-—- Synthetic Control

(b)
Figure D.7: Monthly time-series of fire occurrence (fire) in the treatment and the esti-
mated synthetic control. Figure (a) shows the estimates covering all months while figure
(b) shows the estimates for Novembers only. The corresponding pre-treatment root mean
squared prediction error is .07045076.
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2005 2010 2015 2020
(first) year

Treated ———-—- Synthetic Control

Figure D.8: Annual time series of dry-season vegetation cover measured with NDVI
(dry3.ndvi_imp) in the treatment forest and the estimated synthetic control. The cor-
responding pre-treatment root mean squared prediction error is .00563849.
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